

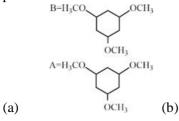
Max Marks: 200 Date: 09.10.2022

ABHIMANYU BATCH CHEMISTRY : PART TEST Set -A

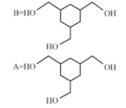
Topic: Organic FLT

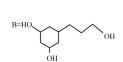
1.	Which one of the following biomolecules is insoluble in water									
	(a)	Keratin	(b)	Haemoglobin	(c)	Ribonuclease	(d)	Adenine		
2.	In the preparation of Grignard reagent from haloalkane, the metal used is									
	(a)	Mg	(b)	Zn	(c)	Li	(d)	K		
3.	The f	unction of anhydro	us AlCl ₃	in the Friedel-Craft'	s reaction	is to				
	(a)	Absorb water			(b)	Absorb HCl				
	(c)	To produce elec	trophile		(d)	To produce nucleophile				
4.	The charring of sugar, when treated with conc. H ₂ SO ₄ is due to									
	(a)	Oxidation	(b)	Reduction	(c)	Dehydration	(d)	Hydrolysis		
5.	The o	leficiency of vitami	n B ₁ cau	ses						
	(a)	Beri-beri	(b)	Scurvy	(c)	Rickets	(d)	Anaemia		
6.	In the following reaction Which of the following phenomenon takes place?									
	H ₃ C-	OH -CH ₂ —CH—CH ₃	SOCI ₂	C1 H ₃ C-CH ₂ -CH-	CH ₃					
	(a)	Retention	(b)	Inversion	(c)	Racemisation	(d)	Epimerisation		
7.	In CH ₃ CH ₂ Br, % of Br is									
	(a)	80	(b)	75	(c)	70	(d)	7		
8.	Which of the following reaction is not the oxidation?									
	(a)	$CH_3 - CHO \rightarrow 0$	CH ₃ COC	Н	(b)	$C_2H_5OH \rightarrow CH_3 - CHO$				
	(c) $C_2H_5OH \rightarrow CH_3 - COOH$					$CH_3COOH \rightarrow C_2$	$_{2}$ H $_{5}$ OH			
9.	Whic	h of the following i	is used in	the manufacture of	thermose	tting plastics?				
	(a)	Formaldehyde	(b)	Acetaldehyde	(c)	Acetone	(d)	Benzaldehyde		

10.	Some meta-directing	g substituents in	aromatic substitution	are given.	Which one is m	ost deactivating?


- (a) $-C \equiv N$
- (b) $-SO_3H$
- (c) -COOH
- (d) $-NO_2$

- A. n Butane
- B. Methoxy ethane
- C. propanal
- D. Acetone


- E. propan 1 ol
- (a) A < B < C < D < E (b)
- $A < C < D < B < E \quad (c)$
- $A < B < D < C < E \quad (d)$
 - . ,


A < B < E < D < C

- (a) Poly-ene
- (b) Poly-amide
- (c) Poly-yne
- (d) Poly-ester

B=HO OH
OH
OCH₃

- (a) Buna-N
- (b) Nylon 6,6
- (c) Neoprene

(c)

(c)

(d) PHBV

(d)

(d)

(a)
$$N_2^+ \text{HSO}_4^- \text{Br}$$

N₂⁺HSO₄ Br

Cu powder

HBr

 $\stackrel{N_2^+ HSO_4^-}{\longleftarrow} \stackrel{CN}{\longleftarrow}$

$$\stackrel{N_2^+ HSO_4^-}{\longleftarrow} \stackrel{I}{\longleftarrow}$$

- 16. Which of the following aldehyde contains αC atom but does not have any αH atom?
 - (a) Propionaldehyde (b)
 - (b) Benzaldehyde
- (c) Isobutyraldehyde
- (d) Formaldehyde

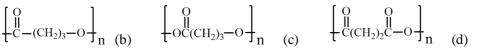
17.
$$C_3H_8 + Cl_2 \xrightarrow{\text{Light}} C_3H_7Cl + HCl$$
 is an example of

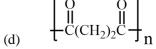
(a) elimination

(b) substitution

(c) addition

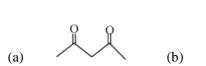
(d) rearrangement reaction


- 18. An aromatic compound 'A' (C7H9N) on reacting with NaNO2/HCl at 0°C forms benzyl alcohol and nitrogen gas. The number of isomers possible for the compound 'A' is
 - (a) 5
- (b)


- (c) 3
- (d) 6

19. The homopolymer formed from 4-hydroxybutanoic acid is

(a)
$$\begin{bmatrix} O \\ H \\ C - (CH_2)_3 - O \end{bmatrix}_n$$
 (b)


$$\begin{bmatrix} O \\ \parallel \\ OC(CH_2)_3 - O \end{bmatrix}_n$$

- 20. CH₃COCH₃ can be obtained by
 - Heating acetaldehyde with Methanol (a)
- (b) Oxidation of n-propyl alcohol
- (c) Oxidation of isopropyl alcohol
- Reduction of propionic acid (d)
- 21. Commercially methanol is prepared by
 - Reduction of CO in presence of ZnO.Cr₂O₃ (a)
 - (b) Methane reacts with water vapour at 900°C in presence of Ni catalytst
 - (c) Reduction of HCHO by LiAlH₄
 - Reduction of HCHO by aqueous NaOH (d)
- 22. Six carbon atoms of benzene are of
 - (a) One type
- (b) Two types
- (c) Three types
- (d) Six types

23. Most acidic hydrogen is present in

- (c) (CH₃CO)₃CH
- (d) (CH₃)₃COH

 $CH_3CN \xrightarrow{Na+C_2H_5OH} X$ 24.

The compound X is

- CH₃CONH₂ (a)
- (b) CH₃CH₂NH₂
- C_2H_6 (c)
- CH₃NHCH₃ (d)

- 25. Fructose reduces Tollens' reagent due to:
 - (a) Asymmetric carbons
 - (b) Primary alcoholic group
 - Secondary alcoholic group (c)
 - Enolisation of fructose followed by conversion to aldehyde by base (d)

Date: 09.10.2022

ABHIMANYU BATCH MATHEMATICS: PART TEST

Topic: Differential Equation

26.	The rate of growth of bacteria is proportional to number present. If initially, there were 1000 bacteria and the											
	numb	er doubles in 1 h	our, then th	e number of bacte	eria after 2½	hours are (Given: $\sqrt{2}$	=1.414)				
	(a)	$400\sqrt{2}$ appro	ximately		(b)	5056 approximately						
	(c)	5656 approxir	nately		(d)	4646 approxima	tely					
27.	A bo	dy cools according	ng to Newto	on's law from 100	°C to 60°C	in 20 minutes. The	e temperat	ure of the surround	ing			
	being	being 20°C, then the temperature of the body after one hour is										
	(a)	30°C	(b)	40°C	(c)	15℃	(d)	20°C				
28.	If the	e population gro	ws at the i	rate of 8% per year	ear, then th	e time taken for t	he popula	tion to be doubled	1 is			
	(Given: $\log 2 = 0.6912$)											
	(a)	4.3 years	(b)	8.64 years	(c)	10.27 years	(d)	6.8 years				
29.	Bacteria increases at the rate proportional to the numbers of bacteria present. If the original number N doubles in											
	4 hours, then the number of bacteria will be 4N in											
	(a)	4 hours	(b)	2 hours	(c)	8 hours	(d)	6 hours				
30.	The p	oopulation of a v	illage incre	ases at a rate prop	ortional to	the population at t	hat time. I	n a period of 10 ye	ars			
	the p	opulation grew fr	om 20,000	to 40,000, then the	e population	after another 20 y	ears is					
	(a)	1,60,000	(b)	1,20,000	(c)	1,00,000	(d)	80,000				
31.	The rate at which the metal cools in moving air is proportional to the difference of temperatures between the											
	metal and air. If the air temperature is 290 K and the metal temperature drops from 370 K to 330 K in 10 minutes,											
	then	the time required	to drop the	temperature upto	295 K is							
	(a)	30 min	(b)	40 min	(c)	20 min	(d)	35 min				

32.	A spherical raindrop evaporates at a rate proportional to its surface area. If its radius originally in 3 mm and 1 our									
	later h	as been reduced to	o 2 mn	n, then the expressi	on of ra	adius r of the raind	rop at a	any time t is		
	(where	$0 \le t < 3)$								
	(a)	r = 3 - t	(b)	r = t + 3	(c)	r = t + 5	(d)	r = t - 5		
33.	A popu	ulation P grew at th	e rate gi	iven by the equation	$\frac{dP}{dt} = 0.0$	05P, then the popular	tion will	be double in		
	years.									
	(a)	12 (log 2)	(b)	20 (log 2)	(c)	5 (log 2)	(d)	10 (log 2)		
34.	A bact	eria culture is know	n to gro	w at a rate proportion	nal to the	e amount present. If t	he initia	l number of bacteria		
						by 20% after 2 hrs, (Given that loge		-		
	(a)	$N = 300 \cdot e^{0.09116 t}$		$N = 300 \cdot e^{2t}$	(c)	$N = 360 \cdot e^{2t}$	(d)	$N = 360 \cdot e^{0.09116 t}$		
35.	_	population grown at $\log 2 = 0.6912$)	the rate	of 8% per year then t	the time	taken for the populati	on to be	doubled is		
	(a)	6.8 years	(b)	4.3 years	(c)	10.27 years	(d)	8.64 years		
36.		th has half life perio	d of 5 da	ays. A sample origina	ally has a	mass of 1000 mg, th	en the m	nass of Bismath after		
	(a)	15.625 mg	(b)	13.625 mg	(c)	14.625 mg	(d)	16.625 mg		
37.		half life period of a		nce is 5 years, then	the total	amount of substance	e after 1	5 years when initial		
	(a)	2 gms	(b)	8 gms	(c)	16 gms	(d)	32 gms		
38.	If the s	surrounding air is ke	ept at 25	°C and a body cools	from 80°	°C to 50°C in 30 min	utes ther	n temperature of the		
	body after one hour will be			approximately.						
	(a)	32.36 ℃	(b)	31.72 °C	(c)	36.36 °C	(d)	34.75 ℃		

39. Population of a town increases at a rate proportional to the population at that time. If it increases from 40								
	60,00	00 in 40 years, then i	n anothe	er 20 years, the popul	lation wi	Il be (taking $\sqrt{1.5} = 1$.2247)	
	(a)	73,428	(b)	73,248	(c)	73,842	(d)	73,482
40.	Popul	lation of city increas	ses at a	rate proportional to	the popu	llation. Within a peri	od of 30) years the population
	grew	from 20 lakhs to 40	lakhs. A	fter a further period	of 15 yea	ars, the population of	the city	(in lakhs) will be
	(a)	56.2	(b)	56.3	(c)	56.4	(d)	none of these
41.	A pop	pulation grows at the	rate of	5% per year. Then th	e popula	tion will be doubled	in	
	(a)	$10 \cdot \log 2$ years	(b)	20 · log 2 years	(c)	$30 \cdot \log 2$ years	(d)	n.o.t.
42.	Supp	ose the rate of grow	th of a p	oopulation is proport	ional to	the difference between	en some	maximum size P and
Suppose the rate of growth of a population is proportional to the difference between some maximum size P at the number N of individuals in the population at time t. If the population size is N_0 at time $t = 0$, then								
	(a)	$N = P - (P - N_0) \epsilon$	e ^{-kt}		(b)	$N = P - N_0 \cdot e^{-kt}$		
	(c)	$N = N_0 P \cdot e^{-kt}$			(d)	None of these		
43.	Bacte	ria in a culture mult	iply at a	rate proportional to	the num	ber present. If the or	iginal nu	imber N ₀ doubles in 3
	hours	, then the number of	bacteria	will be $4N_0$ in				
	(a)	4.5 hrs.	(b)	6 hrs	(c)	9 hrs	(d)	n.o.t
44.	An ic	e ball melts at a rate	proport	ional to the amount of	of ice pre	esent at that instant. I	f half the	e quantity of ice melts
	in 20	minutes, then after a	ın hour,	the amount of ice left	t will be			
	(a)	one third of the or	riginal		(b)	one-eighth of the o	riginal	
	(c)	one-fifth of the or	riginal		(d)	none of these		
45.	Radiu	ım disintegrates at a	rate pro	oportional to the amo	ount pres	sent. If half the origin	nal amou	ant disappears is 1600
	years.	, then the amount lef	t after th	e first 100 years is	$\left(\frac{1}{2}\right)^n$ the	of the original, where	: n =	
	(a)	$\frac{1}{16}$	(b)	1 100	(c)	$\frac{1}{8}$	(d)	n.o.t

46.	Rate of decay of radium varies as the amount present. If 60 mg are present now and the half life of radium is 1690
	years, then the amount of radius present 100 years from now is

- (a) 56 mg
- (b) 57 mg
- (c) 58 mg
- (d) 59 mg
- In a certain chemical reaction, the amount x of a substance is related to the speed of the reaction $\frac{dx}{dt}$ by the 47. differential equation $\frac{dx}{dt} = k(a-x)(2a-x)$, where a, k are constants and x = 0 when t = 0. If x = 2 when t = 1 and x = 2.8 when t = 3, then, when t = 2, the amount x is
- (b) $\frac{3}{7}$
- (c) $\frac{18}{7}$
- (d) n.o.t
- 48. A persons assets reducing in such a way that the rate of reduction of assets is proportional to the square-root of the assets existing at that time. If the assets at the beginning are Rs. 10 lakhs and they dwindle down to Rs. 10,000 after 2 years, then the person will be bankrupt in n years from the start, where : n =
 - (a)
- (b) $2\frac{2}{9}$ (c) $3\frac{2}{9}$
- (d) none of these
- [When interest is compounded continuously, the rate of change of money present at time t varies as the amount 49. present at time t.]

If Rs. 100 invested at 5% are compounded continuously, then the original investment will double itself in

- 13.9 years (a)
- (b) 13.6 years
- 13.4 years (c)
- (d) n.o.t
- 50. A sum of Rs. 2000 is deposited in a bank at the rate of interest of 6% compounded continually. The depositor wants to withdraw the entire amount at the expiry of 8 years and 4 months. If $\sqrt{e} = 1.649$, then he will get
 - (a) Rs. 3298
- (b) Rs. 3289
- Rs. 3258 (c)
- (d) Rs. 3285

Max Marks: 200 Date: 09.10.2022

ABHIMANYU BATCH CHEMISTRY: PART TEST Set - A ANSWER KEY

Topic: Organic FLT

1.	(a)	2.	(a)	3.	(c)	4.	(c)	5.	(a)
6.	(b)	7.	(b)	8.	(d)	9.	(a)	10.	(d)
11.	(a)	12.	(a)	13.	(a)	14.	(d)	15.	(b)
16.	(b)	17.	(b)	18.	(a)	19.	(a)	20.	(c)
21.	(a)	22.	(a)	23.	(c)	24.	(b)	25.	(d)

Date: 09.10.2022

ABHIMANYU BATCH MATHEMATICS: PART TEST ANSWER KEY

Topic: Differential Equation

26.	(c)	27.	(a)	28.	(b)	29.	(c)	30.	(a)
31.	(b)	32.	(a)	33.	(b)	34.	(a)	35.	(d)
36.	(a)	37.	(b)	38.	(c)	39.	(d)	40.	(c)
41.	(b)	42.	(a)	43.	(b)	44.	(b)	45.	(a)
46.	(c)	47.	(c)	48.	(b)	49.	(a)	50.	(a)